On improvement of transient performance in tracking control for a class of nonlinear systems with input saturation
نویسندگان
چکیده
This paper studies the technique of the composite nonlinear feedback (CNF) control for a class of cascade nonlinear systems with input saturation. The objective of this paper is to improve the transient performance of the closed-loop system by designing a CNF control law such that the output of the system tracks a step input rapidly with small overshoot and at the same time maintains the stability of the whole cascade system. The CNF control law consists of a linear feedback control law and a nonlinear feedback control law. The linear feedback law is designed to yield a closed-loop system with a small damping ratio for a quick response, while the nonlinear feedback law is used to increase the damping ratio of the closed-loop system when the system output approaches the target reference to reduce the overshoot. The result has been successfully demonstrated by numerical and application examples including a flight control system for a fighter aircraft. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Robust Adaptive Attitude Stabilization of a Fighter Aircraft in the Presence of Input Constraints
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonli...
متن کاملUsing Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain Systems
Using Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain SystemsNaser Kazemzadeh, Saeed BarghandanAbstractIn the present paper, a practical designing method has been proposed for a novel class of NDOs based on TD. Such NDOs can nearly estimate all uncertain disturbances (specifically disturbances without prediction information). Regarding the outstanding perform...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملPotentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems
Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systems & Control Letters
دوره 55 شماره
صفحات -
تاریخ انتشار 2006